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1.0 Introduction 

The design of fault-tolerant avionics and control systems 

needs to be supported by an assessment of whether the systems possess 

the level of reliability for which they were designed. Because 

ultra-high reliability requirements exist for such systems, an 

experimental approach based on lifetesting techniques cannot be used 

to evaluate them [1,2]. Analytical models based on stochastic 

assumptions must then be developed to help predict and validate the 

reliability of these systems. 

Early approaches to reliability prediction were based on a 

combinatorial method first discussed by Mathur and Avizienis [3]. 

Their method assumed that the system was a series of subsystems, each 

of which was to be modeled as a hybrid NMR type. The reconfiguration 

mechanism was assumed to be perfect. Bouricius and his colleagues 

extended this model to allow the reconfiguration mechanism to have an 

imperfect coverage [4]. As an embodiment of this notion, the CARB 

program was developed at JPL as a computer-aided reliability 

evaluation package. This was later modified by Raytheon and was named 

CARE II [5]. 

Not all systems of interest can be broken down into a series 

of smaller subsystems. In such cases, combinatorial methods have been 

superseded by more general Markov chain methods. Ng and Avizienis [6] 

have developed a unified model for the reliability evaluation of 

nonmaintained (closed) fault-tolerant systems based on a Markov 

approach. These ideas have been incorporated into a computer-based 

reliability evaluation package known as ARIES [7]. 



Several limitations of the early approaches became evident 

with their use in modeling ultra-reliable, fault-tolerant systems such 

as SIFT [8] and FTMP [9]. First, fault coverage was assumed to be a 

single number, whereas in practice, the times to detect, isolate, and 

recover from a fault are nonzero random variables. Furthermore, these 

quantities do depend on the current state of the system. The 

implication is that the fault-handling behavior of the system needs to 

be modeled and one or more parameters need to be derived capturing the 

coverage aspects. Such a coverage model is already a part of CARE II 

and continues to be an integral part of CARE III [lo]. 

The second limitation was the assumption that fault-occurrence 

and fault-handling behavior are simultaneously accounted for by a 

single Markov model of system behavior. This implies a combinatorial 

explosion in the state space of the Markov chain, resulting in 

computation difficulties. It may be recognized, however, that the 

time constants of the fault-handling processes are several orders of 

magnitude smaller than those of the fault-occurrence events. It is 

therefore possible to analyze separately the fault-handling behavior 

of the system (the coverage model) and later incorporate the results 

of the coverage model, together with the fault-occurrence behavior, in 

an overall reliability model. This is the approach used in CARE: III. 

The third limitation was the assumption that all random 

variables of interest are exponentially distributed. In practice, 

this is seldom the case. One possible approach to the problem of 

non-exponential holding times is to use the method of stages [ll]. 

Indeed, this approach has been used in other reliability models [12] 

and in queueing theoretic models for computer performance 

2 



evaluation [13]. However, the use of the method of stages increases 

the size of the state space. CARJZ III is a major departure from 

conventional approaches in that it purports to support non-exponential 

distributions, while avoiding the problem of large state spaces 

through the use of state aggregation. More specifically, CAIiE III 

uses a combination of semi-Markov techniques (while analyzing the 

coverage model) and time-dependent transition parameters resulting in 

a non-homogeneous Markov chain (at the aggregate model level). 

In Section 2, we give some background regarding the ideas to 

be pursued in the remaining part of the paper. In Section 3 tie 

present several simple examples illustrating important. features of the 

CARE III model. In Section 4 we treat the CARE III model in a more 

general fashion with more detailed examples. In Section 5 several 

approximation techniques are discussed. 

2. Background 

A common approach to solving large problems is to partition 

the problem into smaller parts, and then combine the solutions of the 

parts into a solution for the entire problem. This approach to 

problem solving is known as divide-and-conquer and is considered to be 

very effective in designing alorithms [I41 l The same approach iS 

often found to be effective in solving large system analysis problems. 

In this connection we refer to the first step of dividing the original 

problem into smaller parts as decomposition and the step of combining 

solutions of parts into the solution for the whole as aggregation. 
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Aggregation and decomposition are simply the complementary 

activities of combining and separating parts of the system to 

facilitate analysis [15]. The decomposition/aggregation approach to 

system analysis will be effective if (i) interactions within a part 

can be studied as if interactions between parts did not exist and, 

(ii) interactions between parts can be analyzed without referring to 

the interactions within parts 1161. 

If we can assume that subsystem failure/recovery processes are 

independent of each other then a decomposition into subsystems, 

separate analysis of subsystems, and aggregation to obtain the final 

solution can be used. In CARE, for example, solution to subsystem 

reliability is obtained using the hybrid-NMR expression and the 

subsystem reliabilities are multiplied (aggregation step) to obtain 

system reliability. 

Unfortunately the assumption of independent behavior of 

subsystems is often unrealistic. Nevertheless, if the coupling 

between subsystems is weak, we may consider the system nearly- 

decomposable [16] and the solution obtained by aggregation will then 

be an approximation to the desired solution. Indeed this approach is 

considered effective in queueing theoretic models of system 

performance analysis. 

In the reliability context, however, there is an alternative 

approach to the above structural decomposition. This new approach may 

be called behavioral decomposition. We observe that the fault- 

occurrence behavior of a system is composed of relatively infrequent 

events while fault-handling behavior of a system is composed of 
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relatively frequent events. It may, therefore, be desirable to 

separately analyze the fault-handling behavior, and reflect its effect 

in an aggregate model by one or more parameters. This is indeed the 

approach used in CARE II and CARE III. We must remember that the 

solution thus obtained will, in general; be an approximation to the 

,desired solution. The behavioral approach to decomposition of complex 

reliability models will be explored further in the next two sections. 

Next we should consider the problem of modeling non- 

exponential holding time distributions. BY definition of a 

homogeneous Markov chain, the random variable denoting time spent in a 

state must have the memoryless property, that is, must be 

exponentially distributed. This implies a serious assumption about 

the behavior of various fault-occurrence and recovery processes, an 

assumption that is often violated. 

In general, removing this restriction on holding times in the 

states of a Markov chain yields a semi-Markov process, with the 

corresponding difficulty in solving such models. At present, i t 

appears that the use of general semi-Markov processes may have to be 

restricted to relatively small problems. Indeed, the coverage 

(fault-handling) model'used in CARE II and CARE III uses the general 

semi-Markov approach. 

The use of a general semi-Markov process implies that besides 

the state information, we must also have the time spent in the given 

state in order to predict the future behavior of the process. Thus, 

the effective state space is uncountably infinite. For most practical 

problems, however, a lot less information usually suffices. Besides 
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the state of the original stochastic process, a few bits of- additional 

information regarding the time spent in the state is usually enough to 

predict the future. In other words, we still have a Markov chain with 

a finite (in general, countably infinite) state space, albeit a larger 

one than the original state space. 

As a simple example of the problems involved in removing the 

exponential holding time assumption, consider a component with a 

constant failure rate j, (hence exponentially distributed time to 

failure). The Markov state diagram of the component is shown in 

Figure l(a). This is a very simple model to solve for the state 

Figure l(a) - Example Markov Chains. 

probabilities and hence the component reliability. Now, suppose the 

assumption of exponentially distributed time to failure is 

unsatisfactory. Further suppose that the time to failure is a 2-stage 

Erlang random variable with parameter 2 ), (hence the mean time to 

failure is the same as before, that is, l/A). We can then model the 

behavior of the component using the three-state Markov chain as shown 

in Figure l(b). In the state (O,A), the component is in failure free 

Figure l(b) 
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state and in the first stage of its lifetime distribution. Since each 

stage of an Erlang random variable is exponentially distributed, each 

state of the resulting new state diagram possesses an exponentially 

distributed holding time. Furthermore, in general, given any holding 

time distribution, it is possible to derive an exponential stage type 

decomposition of that distribution to a specified degree of 

approximation Ill]. The problem with this approach is that the more a 

given holding time differs from the exponential, the larger the number 

of stages needed to approximate it and the larger the state space of 

the resulting Markov chain. 

Yet another approach to the problem of non-exponential holding 

times is to consider a Markov chain whose transition parameters are 

allowed to be time-dependent. The resulting Markov chain is said to 

be a non-homogeneous Markov chain. Thus, for example, the homogeneous 

Markov chain of Figure l(a) is transformed into the non-homogeneous 

chain shown in Figure 1 (cl l It can be shown that the holding time 

distribution in state 0 is now given by 

Fxo(t) = l - 

Note that if we let h(t) = atb, we have a Weibull holding time 

distribution. 

X(f) d7 
e 

Figure l(c) 
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Although solving for the state probabilities of a non- 

homogeneous Markov chain is somewhat more complex than solving for 

those of a homogeneous Markov chain, the advantage is that the 'state 

spike is not expanded. Another disadvantage is that the transition 

rates are allowed to depend only on global time defined from the 

beginning of the process operation. In order to model an arbitrary 

holding time distribution in a given state i of the chain, we would 

like the transition parameter leading from state i to state j to be a 

function of local time, measured from the time of entry into state i. 

Since the (global) time of entry into state i is a random variable 

(unless state i is the start state), a simple shift of time origin is 

not adequate to transform local time based quantities into global time 

based quantities. 

When we consider reliability models of systems without 

renewals (01: repairs), the time to failure of a component can be 

measured in global time, and hence the failure rate leading out of 

state i can be labelled in terms of the global time. It is in this 

fashion that CARE III models non-exponential time-to-failure 

distributions at the aggregate model level. 

Another apparent difficulty with this approach is met when we 

allow spare failure rates to be different from the failure rate of an 

active unit. Consider a 2-component standby redundant system with the 

active unit failure rate of X(t) and the passive unit failure rate 

d h(t) l 
The non-homogeneous Markov chain of Figure l(d) is a model of 

this system assuming perfect coverage and further assuming that the 

failure rate of the spare.unit once activated is only a function of 

its total age. This assumption is graphically depicted in Figure 

l(e). 
a 



Figure l(d) 

Failure 
Rate 

I 
Spare 
Becomes 
Active 

Figure l(e) 

Time 

Non-homogeneous Markov Chains 
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3. Motivatinq Examples 

We shall now present the essential features of the CARE III 

model through a series of motivating examples. 

Example 1. _. Consider a standby redundant system in which the failure 

rates of the spare and that of the active unit are both 

constant and equal to A. Upon the occurrence of a failure, 

a recovery process takes control and with probability c 

succeeds in recovering from failure. The Markov state 

diagram of the system is shown in Figure 2. 

Figure 2. - Standby Redundant System Markov Chain 

The standard approach to solve for the state 

probabilities of such a process is to set up Kolmogorov 

differential equations and (in the Markov case) use Laplace 

transforms to solve them. We will instead use convolution 

equations [17;pp.483-4881 or the method of sample 

paths 118). The reason for the use of this method is the 

easy generalization to non-Markovian (in particular, semi- 

Markov) processes which we will need shortly. 
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The integral equation for the transition probability 

Pik tt) f the probability that the Markov chain is in state k 

at time t given that it started in state i at time 0, is 

given by 

(1) pik (t) = ‘ik e + z Pij(x) hijk e 
-A, (t-x) 

dx 
j 

where aik is the Kronecker 8 function (that is, 

8 ii = 1 and 6,, = 0 ifk) , Xij. is the transition rate from 

state i to state j and Ai = 5 A... 
j '3 

Applying Equation (1) to the current problem and 

remembering that the start state is 0 so that 

'0 (0) = ' , 'i(O) = 0 ifl, we have the equations for the 

state probabilities Pk(t) = pok(t) as follows: 

PO (t) = e-2ht, 

PIW = P,(x) 3s e -h(t-x) dx 

=2Xce -At eehx dx 

= 2c [e -At - e-2Xt ] , and 

p2w = PO(x) 2h(l-c)dx + PIW h dx 

z e-2xx 2x(1-c) dx + 2c [e -XX - e-2hx ] ), dx 

= (1-c) [l-e-2Xt ] + 2c [(l-eBXt) - $ (1-e-2Xt) 1 

= 1 - 2c eeXt - (1-2~) e-2Xt. 
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, _-_... ._ _ . ._ - .- . 

The system reliability 

(2) R(t) = Z 
k GL 

Pk (t) = PO(t) + Pi(t) = 2c emXt+(l-2,) e-2Xt 

where L = {O,l} is the set of system states where the system is 

functioning properly. 

# 

In Example 1, we note that the system reaches the failure 

state labelled 2 due to two distinct causes: exhaustion of spares, and 

coverage failure. For the subsequent discussion, we wish to separate 

the probabilities due to these two causes of failure. 

Example 2: We reformulate the state diagram of Figure 2 so that the 

system has five states: in state 0 the system is 

functioning properly without any unit failing, in state 1G 

the system is functioning properly with a prior (covered) 

failure of one of the units, in state 1F the system has 

failed due to the occurrence of one uncovered failure, in 

state 2F the system has experienced two failures, in state 

2G the system has experienced two failures (both covered) 

but the system has failed due to exhaustion of spares. The 

reformulated state diagram is shown in Figure 3. 

The transition from state 1F to 2F may appear 

strange but it is very convenient. As we shall see in the 

next example, if we delete this transition, the state 

probabilities will change but the system reliability will be 

the same. 
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Figure 3. - Reformulated Figure 2 State Diagram 

We will let 

Pi(t) = P (iG) (t) ' 

Qi(t) = P(iF) (t), and 

P;(t) = '(iG) (t) + '(iF) (t) . 

Solving for the state probabilities, as in Example 1, we have 

PO(t) = e-2Xt , 

PlW = PO (xl 2A ce 
-A (t-x) dx 

= 2c [e -At _ e-2ht ] r 

QIW = 
$ 

PO 1x1 2X (1-c) e -h(t-x) dx 

= 2(1-c) [ewAt - eB21t ] , 
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p2w = Plkdh dx 

=c- 2c eSXt + c e'2Xt, and 

Q2W = Q,(x) X dx = (l-c) -2 (1-c) esht + (l-c) e-2ht 

Note that the system reliability is given by 

R(t) = x Pk(t) 
kGL 

= PO(t) + Pi(t) 

= 2c e -At +(1-2c) e -at ', 

as in Example 1 (Expression (2) ). 

Computing 

P;(t) = PO(t) = 2 -2Xt 

p;(t) = 2 [e -At,em2ht 1, and 

P;(t) = 1 - 2 eWXt + e -2At I 

we note that P;(t) is independent of the coverage factor c. But 

this should not be surprising if we redraw the state diagram of 

Figure 3 by aggregating states iG and iF into * 
the state i to 

obtain the state diagram of Figure 4. Here all transition rates 

Figure 4. - Aggregated Figure 3 State Diagram. 
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are independent of c. Interpreting this diagram as the 

fictitious situation of perfect coverage, we conclude that P;(t) 

represents the probability that the system has sustained i faults 

by time t, assuming coverage to be perfect. This reinforces our 

earlier interpretation of Pi(t) and Qi(t). 

# 

Example 3: Let us remove the assumption that a failure is allowed to 

occur in another module after an uncovered failure has 

occurred in some module. Therefore, we redraw the state 

#-J yg 
0 0 

P 7/ 
c G. 

cJ 

0 LF 
Figure 5. - Redrawn Figure 3 State Diagram. 

diagram of Figure 3 as shown in Figure 5. Computing state 

probabilities, we get 

PO(t) = e -2Xt I 

p1 (t) = P(lG)(t) = 2c(e -+&,-at), 
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Q1 (t) = ‘(1F) ft) = PO(x) 2h(l-cl dx, 

= (l-c) [l-e-2ht 1 , and 

p.2 (t) = P(2G)(t)=c - 2ce -At -I- c e-2ht . 

Note that 

R(t) = Po(t)+Pl(t)=2c e -Xt +(l-2c) e -2xt 

which is identical to the result obtained in Examples 1 and 2 

(Expression (2) 1 l However, we can no longer interpret 

Qj (t) + Pj (t> = Pi(t) as the probability of being in state j at 

time t were the coverage perfect. 

# 

One problem with models of Examples 1-3 is that the value of 

the coverage parameter c is assumed to be known (specified by the 

model user). In practice, however, such parameters are extremely 

difficult to estimate. The extreme sensitivity of the reliability to 

the coverage parameter [19] further compounds this problem. It is 

imperative, therefore, to provide a method of estimating coverage 

parameters based on more elementary, easier to specify, parameters. 

Example 4: Consider the Markov model of the fault recovery 

process 1201 shown in Figure 6. The model consists of five 

states. In the active state A, the fault is capable of 

producing errors at the rate e leading to the error state E. 

The fault is assumed to be an intermittent type so that 

occasionally it goes into the benign state B, where the 

affected circuitry temporarily functions correctly. In 
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Figure 6. - Markov Model of Fault Recovery Process. 

state D the fault has been detected while in state F, an 

undetected error has propagated so that we declare the 

system to have failed. 

To illustrate the point of this example, it is more 

convenient to use the Laplace transform method to solve the 

differential equations for the Markov chain. First the 

differential equations are: 

dP1 - = -cct+p+81 P1 (t) + p 3 (t) I dt 

dP2 - = -p P2(t) + d Pi(t) I dt 

dP3 - = -e P3W + p PlW I dt 

dP4 
dt= 8 Pi(t) -I- q e P3(t) , and 

dP5 - = (l-q) e P3(t) . dt 
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Applying Laplace transforms and recalling that state 1 is the 

initial state, we get (Pi(s) denotes the Laplace transform of 

'itt,! ' 

(s F1(s)-1) = -(d+p+S) F,(s) + p F2 (s). 

or 

P,(s) = 
p Ti,(s)+l 

s+c(+pT , 

P,(s) = 4P,(s) s+ 
B ’ 

P,(s) = 
p F,(s) 

s+e , 

s F1(s)+q e P,(s) 
F4 (s) = -- 

S 
, and 

F5 1s) 
F, (s) 

= (l-q) e s l 

Hence, 

Fl(S) = 1 
s+(4+p+S) - 4& 

B 

and F4(s) = $ cs+$g 1 ( 
1 

(s+c(+p+S) - 4& 

) l 

B 

Although it is possible to invert this transform to obtain the 

probability of detection by time t, P4(t), we will be content 

here with finding the limiting probability by using the Final 

Value Theorem of Laplace Transform: 
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lim P4(t) = lim s F4(s) = (S+v ) 
t-a s->o ccc+p+h - 4 

This represents the probability that the fault (which occurred at 

time t=O) eventually is detected. It is for this reason that we 

conclude that the coverage factor for this .fault model is given 

by 

(3) c =Q+-% 

Similarly, (l-c) = lim P5(t) = + (1-q) . 

t-am +e 
# 

Example 5: The results of Example 4 can be used to calculate the 

coverage factor c, and subsequently this value of c can be 

used in the computations of Example 1 (or 2 or 3) in order 

to evaluate the system reliability. Now the user can 

specify elemental quantities S ,(o ,q, 4 ,p as needed in the 

coverage model calculations. Thus, for instance, the 

reliability model of Example 2 in conjunction with the 

coverage model of Example 4 gives the following state 

probabilities: 

PO(t) = e-2ht , 

(4) PIW = 2 + s+ y ie-Xt _ e-2ht ] 
+P 

I 

(5) Q,(t) = 2 e#+p [ewXt - e-2Xt ] , 

(6) P2W = ‘Q2-3 [l - 2eeht + e-2ht ] , 
a+(3 
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(7) Qz(t) = pe [I - 2emXt + e-2ht 1, and system 

reliability, 

(8) R(t) = e-2ht + 2 * (eMAt - em2ht) . 

# 

Use of the hierarchical approach to reliability evaluation 

described so far is supported by a 'realization that holding times in 

various states of the coverage model (of Example 4) will be several 

orders of magnitude smaller than those in the fault-occurrence models 

(Examples l-3). Nevertheless, this approach yields only a first-order 

approximation to the more accurate model that we wish to study. 

0 0 

? 

I 

I 

Figure 7. - Markov Model of a Two-Unit System. 

Example 6 -: Consider the Markov reliability model of a 2-unit system as 

shown in Figure 7. Solving for the state probabilities of 
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this Markov chain using the convolution integration approach 

we get (for the sake of simplicity we assume tha.t 

4 = f3 = 0): 

PO(t) = e -2Xt I 

'(IA) (t) = PO(x)2 he -@+g+h) ft-x) dx 

2x 
= h-@+(s) e 

-#+p+Mt - 2x 
h-(8+@ 

.-2ht I 

‘(1E) tt) = P(~~) (x) e,-(s+h! (t-x) dx 

P(lEj (x)q ee-X(t-x)dx 

=2 cS+ps) e-Xt --n+g 

‘(IF) tt) = P(lE) 1x1 (1-q) e emhftmx) dx 



P(2F) (t) = p(lF) (x)h dx 

23A2(l-q) *)...e (1-Q - cx+p+S) t 
+- 

(X2-G2) (p+"-"1 
- (x+(-J+&) (A- (p+&)q3+8Z)(e+6) e 

and 

p(2&') tt) = [p(lA) (x)+p(lD) txjip(lE) (x) ]A dx . 

= l- (Po+P~A+~~E+~~D+~~F+~~F) l 

In our earlier terminology, we are now in a position 

to compute Ql(t) = P(lF) (t): 

as-t 1 (9) Q,(t) = w kmXt - -m&+j-j- e-2Xt I 

_ 2h (1-q) 
-8 

f - (X+e) t e e- (h+S+p) t 
( +p-a A-e - [)\-@+p) 1 (a+@ ’ l 

Comparing Expression (9) with the earlier Expression (5) 

derived in Example 5, we note that if we let A/C and )-,/(S+p) 

approach zero while keeping the individual terms non-zero, 

the two expressions become identical in the limit; A 

similar argument will show that in the limit all state 

probabilities derived, in the present example reduce to those 

derived in Example 5. Thus indeed, the approach in Example 5 
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is a first-order approximation to the exact solution 

derived above. For instance let us compute 

(10) p1w = P(lA) w-~(lB) wy(l*) (t)+p(lE) (t) 

_ [2 1 (A-W (A-h -p (X-se) I ] e-2Xt 
(X-e) (A- (p+rn 

+ ,?h$pzg;~ 

In modeling ultra-high reliability systems the 

approximate approach of Example 5 may not be adequate but, 

at the same time, the exact approach of Example 6 can become 

unmanageable when we consider systems with hundreds or 

thousands of modules. We therefore need to pursue 

decomposition approaches which are more accurate than the 

first-order approach of Example 5, yet more manageable than 

the exact solution of Example 6. CARE III provides one such 

approach to handling reliability models with an extremely 

large number of states. 

# 

Example 7: Continuing with the Markov chain of Example 6, suppose we 

wish to suppress all the details of various states of the 

coverage model, and, with a given number of faults join the 

system, we consider only 2 states: the system has 

experienced a coverage failure or it has not. In the 
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specific case at hand, we aggregate the states lA, 18, lD, 

and 1E into a single state 1G as shown in Figure 8. 

Figure 8. - State Aggregation for Example 6. 

In order to complete the specification of this 

reduced Markov chain, we need to specify the transition 

parameter a'(t). We shall see shortly that this parameter 

is time dependent (as indicated by the notation) and hence 

the Markov chain of Figure 8 is non-homogeneous. 

The easiest way to compute a'(t) is to refer back to 

the solution of the Markov chain of Figure 6: 

a'(t) = 
cl-y) "P(lE) (t) --. 

p(W w+P(lB) (t)+P(lD) w+P(lE) (t) l 

In other words, to compute the effective transition rate 

from an aggregate state, we sum the transition rate times 

the state probability of each state contributing to the 

outward flow in the non-reduced model and divide the sum by 
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the total probability of being in any one of the aggregated 

states. In the present case, we get 

hp -(e+h) t 
a'(t)= (1-q)s[q8&) 0&-(~-(8+@) (S-f-p 

2xp e;(b+p+X)w) +( 2Xpe-2Xt 
A- (%) ) (h-e) ' 

p1 It) 

where Pi(t) is given by (10). 

Dividing the numerator and denominator by 2 e -At , we obtain 

(11) 
-et 

XPe -(a+@ t 
E) (&iy(A- (Sip, ) (t+=zj +--$pCL- CA- ( +p> ) (A-e) 3 

a*(t) = 
c- 1 (h-e) CXw8) - -%5- (A-qe)] e-ht+ [&$C!CL--] emet (h-e) (A- (p+ 1 1 (p+ 4) (h-e) 

where, again, c =%y . 

# 

Now all the transition parameters of the non-homogeneous 

Markov chain of Figure 8 have been obtained and hence the state 

probabilities can easily be found using standard methods (to be 

described in the next section). However, there is a catch in this 

procedure! Before we solve the reduced model of Figure 8, we must 

first solve the full model of Example 6 in order to obtain the 

transition parameter a'(t)! Nothing seems to be gained by the process 
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of reduction. The answer to this objection is that the computation of 

a’ (t) can be carried out without solving the full reliability model. 

Xn fact, in computing a'(t) we need only to look at a very simple 

coverage model (with 5 states in the present case) and then solve the 

fault model of Figure 8 (also with 5 states in the present case). 

This computation replaces the earlier computation based on the model 

of Figure 6 (with 8 states). 

Example S: We now proceed to illustrate the computation of a'(t) using 

the coverage model of Figure 9. We note that the coverage 

Figure 9. - Coverage Model for a'(t) Computation. 

model will be entered subsequent to a failure in one of the 

two modules at some time T. Let Pj ttmT) denote the 

probability of being in state j e {A,B,D,E,F) at time t 

given that the coverage model was entered at time T. We 
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compute these probabilities using the convolution 

integration approach: 

pA(t-Y) = e - e+p, (t-r) 

t-7 
PB(t-r) = 

s 
PAN e -e (t-r-x) dx 

= + (e-“(“-r)_,-(~+~) (t-7) ) , 

t-r 
pD(t-~) = 

i 
(PA(x)8+P~ (xl q e) dx 

and 
t-r 

p&t--')' 
d 

P,(X) (l-q) e dx 

=p - g&f%+ (t-1 + .-A&y&Q p+s, (t-r) 

In order to compute a'(t), we note that 

# 

a’ (t)‘prob (l-ae* Prob. of being in state E at time t 
. of beingin one of the states [A,B,D,E)-time t 

(l-q)e p&t-s)* P(cov. model entered in the interval (r,T+dr)) 
=- 

[pA(t-r)+p,(t-+)+p,(t-T)+pE(t-T) l*P(cov. model entered in the interval (r,r+dr)) 

pE(t-~)he-'~d T 
=(l-q)e $ = (l-q)eN 

(1-pF(t-7)) J,e-'+d T 
D 
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First evaluate the numerator N, 

N= 2+ - [e 
-e(t-r) _ e -(a+@ (t-r) ]), e-Ard y 

In a similar fashion, D is computed and to our pleasant surprise, 

we (1-q)g N find that the ratio --D exactly matches with our earlier 

expression for a'(t) given by (11). 
# 

The method described in the last example can be extended to 

more complex coverage models, and the results of the coverage model 

calculations can then be plugged into the overall reliability model 

which will necessarily be a non-homogeneous Markov chain. These 

extensions are developed in the next section. 

4. CARE III Model Development -- 

As pointed out in the last section, two major concerns with 

any advanced reliability prediction model are: 

1) the problem of very large state spaces, and 

2) the desire to include non-exponential holding times. 

The CARE III approach to the first problem is the state aggregation 

(or decomposition) method, and the approach to the second uses a 

combination of semi-Markov techniques (at the coverage model level) 

and time-dependent transition parameters resulting in a non- 

homogeneous Markov chain (at the aggregate model level). 

28 



As noted earlier, non-exponential holding times within the 

coverage model are handled using the sample path enumeration method. 

Let us examine the approach of non-homogeneous Markov chains used in 

CARE III to deal with non-exponential holding times in states outside 

the coverage model. As seen in Example 7, even if all holding times 

are assumed to be exponentially distributed in the original model, 

derived transition parameters of the aggregate model are time 

dependent, hence the temptation occurs to use time-dependent 

transition parameters to model non-exponential holding times in the 

fault-occurrence model. 

One problem occurs in using this approach. The time 

dependency of transition parameters can be easily handled, provided 

the time is measured from the beginning of system operation (global 

time). However, non-exponential holding times in a state naturally 

give rise to time-dependent transition parameters associated with all 

arcs emanating from the state, with time measured from the point of 

entry into that state (local time). Suppose, for example, we wish to 

model the holding time in state i to be Weibull distributed with the 

hazard rate J,(T) = a ~~~ dnd suppose there is only one transition out 

of state i to state j; then we must label the (i,j) transition with 

parameter Xij(T) = a vb where time T is measured from the time of the 

last entry into state i. Now the global t is related to 7 by 

t = Ti + T where Ti is the global time to the last entry into state i. 

Note that Ti is a random variable and hence a fixed time translation 

will not suffice, in general. 
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The argument to be used here in favor of CARE III is that all 

failure processes can be assumed to start at the beginning of system 

operation; hence, the global time .can be used to assign time-dependent 

transition rates to all arcs due to failure events. Of course, this 

arqument breaks down if renewals (repairs) take place. However, as 

per the interpretation in Section 2 (Figures l(d) and l(e)) non-unity 

dormancy factor (that is, spare failure rate being different from 

active failure rate) can be handled. 

We will develop the general approach to non-homogeneous Markov 

chains and its use in the CARE III model in the next three 

subsections. 

4.1 Non-Homogeneous Markov Chains 

Consider a discrete-state continuous parameter Markov chain 

{x(t), t 2 01. Let the transition probabilities 

Pijtvtt) = P(X(t)=j 1 X(v) = i) 

for O<v<t and i,j = 0,1,2,... -- 

where we define 

Pij(tlt) = 

I 

0" 

I if i=j 
I otherwise l 

The Markov chain {X(t), t > 0) is said to be L 

(time)-homogeneous (or is said to have stationary transition 

probabilities) if p ij(v,t) depends only on the time difference (t-v). 

Let us denote the state probabilities at time t by 

pk tt) = P(X(t)=k) , k=0,1‘2,... and t > 0 . 
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We assume that state 0 is the. initial state and hence, 

pk ft) = p,,(bt) l 

The transition probabilities of a Markov chain {X(t), t 2 0) 

satisfy the Chapman-Kolmogorov Equation [21]: for all i, j in the 

state space, 

The direct use of (12) is difficult. The state probabilities 

are usually obtained by solving a system of differential equations 

that we derive next. Under certain regularity conditions, we can show 

that for each j there is a. non-negative continuous function qj(t) 

defined by 

= lim 
Pjj (t,t)-Pj. (t,t+h) 1-p..(t,t+h) 

h = lim 
h->O h . 

h->O 

Similarly for each i and j (fi) there is a non-negative continuous 

function qij (t) defined by 

4ijft) = 

= 

a 45 Pijtvft) lv=t 

lim pi7 ' (t,t+h)-pi. (t,t) 
= lim 

Pi*(t,t+h) 
. 

h->O h h->O h 
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Then the transition probabilities and the transition rates are related 

by% 

pij(t,t+h) = qij(t) * h+O(h) , i#j 

and 

‘jj 
(t,t+h) = 1 - qj(t) * h+o(h) , i=j . 

Using (12), it is possible to obtain a differential equation for the 

state probability Pj(t): 

(13) 3 = [ i;jPi(t) qij(t) I - pj(t) 4jtt) l 

The linear first-order differential equation is easily solved 

using standard calculus techniques [22, pp. 53-571 to obtain the 

convolution integral form of Pj(t) (analogous to Equation (1) for the 

homogeneous case): 

(14) Pj(t) = Pj(O)e 
- qj(T)dr 5 

+ I 
Pi(x)9ij(x)e x dx . 

i#j 

The first term on the right-hand side will be zero for all but the 

initial state. 

1 o(h) is any function of h that approaches zero faster than h: 

lim h o(h)=0 . 
h->O 
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Example 2: Consider the slightly general version of the Markov chain 

in Figure 4, shown in Figure 10. Applying Equation (14), we 

probabilities: 
j,(r)d 7 

I 

AtrId 7 
* 

P1 = Pi (x) 2X(x) e dx , and 

* 
P2 = P; (xl h(x) dx l 

Given the function X(t), it is possible to numerically evaluate 

the state probabilities in order Pi(t) , P;(t) , P; (t) l We will 

assume that our aggregate reliability models will not have any 

renewals or repair type transitions: it will always be possible 

to order the states in this fashion. It should be noted that the 

Markov chain of Figure 10 represents the twice collapsed version 

of the Markov chain of Figure 7. The first level of collapsing 

was done to Figure 8; now if we further collapse states 1G and 1F 
* * 

into state 1 , states 2G and 2F into state 2 , and relabel state 

0 as 0*, we obtain the diagram of Figure 10 (albeit, with the 

addition of time-dependent transition rates).. 

# 

Figure 10. - Generalized Figure 4 Markov Chain. 
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With CARE III models, it is always the case that the 

reliability model under the assumption of perfect coverage will be a 

generalized version of the model in Example 9. Furthermore, we will 

need the state probabilities for the perfect coverage case in order to 

evaluate the state probabilities of the model with imperfect coverage. 

Figure 11. - Perfect Coverage Case. 

In the perfect coverage case, we let Xij(t) denote the 

transition fate from state i to state j (due to a failure event) and 

let Xi(t) = Z Xij (t) (see Figure 11). Then the state probabilities 
j 

are written as: 

(14a) Pi(t) = Pi(O) e 
Xj(y)d 7 

+ z '; (x)Xi j (Xl e 7 dx . 
i#j 

4.2 Reliability -- Models with Imperfect Coverage . 

The general structure of an aggregate CARE III model is shown 

in Figure 12. The perfect-coverage version of this chain, with states 

jG and jF collapsed into state j*, is shown in Figure 11, where we 

necessarily have 

(15) hj (t) jk(t) . 
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The r)j(t) transitions are due to preexisting latent faults that cause 

a doverage failure without additional faults occurring. The eij(t) 

transitions are due to the occurrende of a fault that either by itself 

or in conjunction with preexisting latent faults, causes an immediate 

coverage failure. 

Figure 12. - General Structure of CARE III Aggregate Model. 

Using the convolution integration approach (14), we can write 

the state probabilities: 

Pj(t)"P(jG) 
(t) ='j (O) e 

3 Xj (7)d7 

+L pi(x) Yij(x) e x dX 
i#j 

(1Ga) 
Aj (7)d7 

and 

(16b) Qj (')" (jF) (t) = iX Qi (X)xij (XI -xhj(7)d 
J 

e r dx 

+ 5: 
Wj $ 

-xXj(r)d 
5 

'itx) 'ij tx) e T dx 

+ pj(x)lJj(x) e T dx ., 
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For numerical reasons, (Qj(t) is typically close to 0, while 

Pj(t) is close to .l) the computations of Qj(t) (using (16b)) were 

found to be less prone to round-off error accumulation than those of 

'j (t) (using (16a)). Further, although the Qj(t) depends directly 

won 'j It) I it has been the experience of the implementors of CAFE III 

that replacing Pj(t) by P;(t) in the Equation (16b) for Qj(t) does not 

cause excessive errors, and those introduced are on the conservative 

side of under- estimating system relia 

P 

ility. Therefore, we can write 

- Xjcy)dl 
(17) Qj(t) = Z 

i#j $ 
Qi(X)Xij (X) e x dx 

+ z 
i#j 6 

- hj(T)dy 3; 
Pi(X) eij(X) e x dx 

+ Pf (Xl ~j (Xl e dx . 

Thus, we first compute Pi(t) (perfect-coverage case; using Equation 

(14a)) and then compute Qj(t) using the above approximation (17). The 

system reliability is given by 

R(t) = 1-( ~ Qj(t) + 
jCL 

~- pj(t) ) 
jCL 

3 l-( ~ Qj(t) ' 
jCL 

z- P;(t) - 
jSL 

r_ Qj ( t) ) 
j CZ 

where L is the set of good (system operational, given perfect 

coverage) states and E is the set of bad states. 
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Before calculation of Qj(t) can be carried out, the transition 

parameters hij(t), eij(t) , yij(t) , and qtj(t) have to be specified. 

Of these, hij(t) will be user specified, and the remaining parameters 

will be computed based upon the user specified coverage and failure 

rate parameters. 

We have already seen one of the qj(t) transitions in Example 7 

where we named it a'(t). The next example illustrates a case with 

non-zero Gij(t) transitions. 

Example 10: Consider a special case of the (permanent fault) - 

reliability model of the Fault-Tolerant Multiprocessor 

(FTMP) . Assume that there are n processors each with a 

constant failure rate A. Upon occurrence of a fault there 

is exponentially distributed detection latency of rate 8. A 

fault is ultimately detected with probability 1 but if a 

second fault occurs while another is latent (within its 

detection latency phase), a coverage failure is said to have 

occurred. Figure 13 shows a portion of this reliability 

model. 

Figure 13. - Abbreviated Fault-Tolerant Multiprocessor Model. 
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Figure 14. - Perfect Coverage Markov Chain. 

First we solve for the state probabilities P;(t) 

assuming perfect coverage, using the Markov chain in Figure 14. 

Pi(t) = e -nht I 

P;(t) = 
$ 

e-nhx . n), . e -(n-'l)h(t-x) dx 

= e - (n-1) Xt n ( 1-e-Xt) 

P;(t) = 
t 

i 
P;(x) l (n-1)X 8 -(n-2)X(t-x) dx 

= (;I e -(n-2)ht(l-e-Xt)2 

and, in general, 

(18) P;(t) = (;)e -(n-j)Xt (l-,-Xt)j , j = O,l,... n . 

Next consider the reduced version of Figure 13 shown in 

Figure 15. If we wish to compute Qj(t) using Formula (17) 8 then 

we first need to derive an expression for 8 j-l,j(t). Now it is 

easy to see that 

(lg) ‘j-1 j(t) = P 
b-j+l>X p( l + ,(t) 

8 (j-1) .(t)+SIjB1) ,(t) ’ (n-j+l)A Y l 
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Figure 15. - Reduced Version of Figure 13. 

In order to apply this formula, we need to obtain the state 

probabilities P (j-l) A(t) and '(j-1) D (t) for the chain of Figure 

13, but this is precisely what we wanted to avoid! 

We note, however, that we do not need the actual values 

of these probabilities but merely the ratio 

y=p 
‘(j-1) Att) 

(j-1) Aft) ’ ‘(j-1) Dft) l 

Note further that y is the conditional probability that there is 

a latent fault given that the system has experienced (j-l) 

faults. 

Figure 16. - Example Markov Chain with Coverage. 

We claim that a good approximation to this probability can be 

obtained from a very simple 3-state coverage model for the 

specific module which has experienced the fault that forced the 
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system into state (j-l) A. Consider the Markov chain of Figure 

16. We claim that if we compute the state probabilities for this 

chain, then the ratio 

9= (j-lb-- P( state A at time t) 
P(state A at time t) + P( state D at time tj' 

is approximately equal to the ratio y that we seek! The factor 

(j-l) here represents the number of ways in which we could find 1 

latent fault among the j-l faults present in the system, that is, 

(j-1 1 ). In a more general setting we would need the number of 

ways TV latent faults can be found in the system given that it has 
. 

experienced j faults, that is, (I) as the multiplying factor. 
P 

We now proceed with the computation: 

P( state A at time t) 

t 
= pA(t-x) * P( cov. model entered during (x,x + dx)) 

=t!q ' [eBXt - e-8t ] , and similarly 

P(state D at time t) = p,tx) &x 

= 8 [l-emXt 
b- 

-at 
-A x -*I 

= 8 1 - m emht + & e+. 

40 



Hence, the required ratio is 

P= 
x e-Xt _ .--at 

(j-1) m l-e-At 

which implies that 

(20) ~j-1 jft) = (n-j+l)X (j-l) & 1 
--At-,-at 

-At l 
8 

-e 

The reader is urged to check that computation of 012(t) based on .a 
Formula (19) gives exactly the same answer as (20) whereas the 

exact computation.of @23(t) gives a somewhat different answer 

from that produced by (20). However, for small enough values of 

h/6, the two answers tend to be rather close; for example, if we 

take h = 1o-5 failures/hour and detection rate 

a = lo2 (x/a = 10-7) we find that the two values, 

e23(t) and C323(t), agree to six decimal places, for any time 

t > 0. 

Now applying Formula (20)' we have 

Qj(t) ’ Qj-1 (x) (n-j+l)), e-(n-j)A(t-x) dx 

+ Pi-l(x) (n-j+l)X A* (e 
-hxBe-ax 

) e-(n-j)X(t-x) dx . 

where QO(t) = 0 'and Pi(t) is given in (18). 
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Then using (18)' we have 

Qj (t) = (n-j+l)h e-(n-j)kt [ Qj-l(x)efn-j)Xkdx 

-(n-j+l)hx(l-e+x)j'l x 
( l-ewXX) 

(j-1) &e-' XX-,-8x,,+-jiXx 
dxl 

= (n-j+l>X ewfn-jJht [ Qjsl(x) efn-jJXx dx 

+ ( 

$ 

n32) n(n-1) [e-2Xx-e -(wdx 1 (1-e-Xx) j-2 . 

# 

Example 11: We can observe another transition of the - - r) 
j type when we 

consider the 2-unit system of Figure 17, which incorporates 

-- --- 
7 I. 
I 
I 

x ) 

I 0 dG 

0 dF 

Figure 17. - Two Unit System Model with Full CARE III Single 
Fault Coverage Model. 
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the full CARE III single fault coverage model. Errors are 

generated at rate e only from the active state, but, once 

generated, can propagate from either active or benign 

states. 

The corresponding perfect coverage model was given 

in Example 2, and, ifc(=B = 0, we are here carrying out 

the analysis begun in Example 8. 

To avoid the unpleasantness of recursive formulas, 

we consider the case p = 0 (though c( need not be 0). Now 

clearly 

Ol(t)-(l-q)*[P(state AE at time t)*P(state BE at time t)] 
P(state A or B or AE or BE or AD or BD at time t) 

[pAE(t-x)+pBE(t-x)l~e-XX dx 

where again 
Pj (t-x) = P(coverage model state j at time t, 

given entry at time x). Using convolutions, we have 

- cp+4+a, (T-Y) -(-d)y dy 

=p+ -e [e - (c(+e) 7 _ e- m+p+a T ] 

PAE(T-Y) c( emey dy 

so that 

P&t-x)+pBE(t-x) = d+ [e-s(t-x)-e-(4+~+s) (t-x) 1 . 
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Further, 

(l-q)el p,(y)+pBE(y) I dy 

so 

IQ”) = 

-At (l-q-& (X-e) IX- kf+6+r)) + (1-q) e Xeaet (l- )e Xe wp+ e- +--‘cI+cJcs, lz -em=a - t4+p+ -El (A- (4qFa-j-Y 

Now Qo(t) = 0, and Ql(t) m y be approximated by 

f - X,V)d 7 
Q,(t) = P;(x) gl(x) e x dx 

= 2 ewXt (l-emxx) 1)1(x) dx 
$ 

Since the rate h is, in practice, several orders of 

magnitude smaller than any rate Y e 14 ,8 ,p ,e}, it is 

reasonable to consider Ql(t) as x --->O; in Y this case the 

integral simplifies considerably: 

Q, (t) z lLp$ 2 (e-Xt _ e-2ht). 
4-b +p 4 
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This same consideration 0, / )'-->O) can be used here 

to gain an estimate of the error introduced by using P;(t) 

.rather than Pj(t) in computing Qj(t). If we write 

9lW 9 N(t) / D(t) I then by solving the complete Markov 

model of this example (with no separation of coverage) we 

find 

Pl ItI = 2 emXt D(t) 

so that q,(t) = 2 eWht N(t) / PIW, thus giving us a 

fortuitous cancellation in 

Q,(t) = P1(x) ql(x) e 
-X(t-x) dx . 

If X/y--> 0 now we obtain 

Ql (t) = kp 2 (e-+-e-2ht ) 
cI+ +p 

which can easily be 

value to show the 

compared with 

extent of the 

the earlier approximate 

under-estimation of system 

reliability 
* 

Note that 

I 

introduced by using Pl. unless 
Ql (t) -Q, (t) 

Q,(t) 
is small compared to 1 (equivalently, (1-u 

d+S+p q 
is small compared to l), the error is substantial. 

# 

Example 12: can - Transitions of all four types (A.. ,e.. 
13 17 

,y ij and 9-j) 

be illustrated in the 3-unit model of Figure 18, which 

incorporates the CARE III double-fault coverage model, as 

well as two CAPE III single-fault models. 
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Figure 18. - Three Unit System Model with CARE III Double Fault 
Coverage Model and Single Fault Models. 



The occurrence of a second fault while the first is 

in an active state (A1 or AEl) causes immediate system 

failure, thus a e12 type transition. Should the first fault 

be in a benign state, the second forces entry into the 

double fault model, from which we have detection or system 

failure, the latter due to either both faults becoming 

active or a single active fault generating an error. Thus 

system failures from the double fault model are of the v2 

type t as are uncovered propagated errors from the states 

AE2 and BE2. Of course, we still have 91 type transitions 

from states AEl and BE1 as well as the obvious yij and xij 

types present in Example 11. The corresponding perfect 

coverage model of Figure 19 is easily seen to have solution 

Pi(t) = e -3Xt I 

P;[W = 3( e'2ht-e -sit) I 

p; (t) = 3( emAt - 2 e-2Xt + e-3Xt ) , and 

P;(t) = 1 - e -3Xt +3 e'2xt - 3 emAt . 

Figure 19. - Perfect Coverage Model for Figure 18 System. 
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Again Q,(t) = 0, and 

Ql(t) s +ql(x) e 
T 

dx 

where 91 is computed using a single-fault coverage model 

identical to that in Example 11, and Xl(y) = 2 ),. Thus 

Q1 (t) t 3e-2Xt ( I-emhx 1 ql(x) dx. 

x If we again consider --->O, then, using the 
Y computation Of 

this integral already carried out in Example 11, we have 

Q,(t) 2 cIiJ&3+(3 q 
3kc&! (,-W-,-3Xt) . 

Here, again, if we use P 
* 

1 rather than Pl we obtain 

Ql(t) = ,w (e-2Xt-e-3Xt ) . 

Q,(x)h12(x) e -xX2(T) 5 
Now Q2(t) = a? dx 

+ 
$ 

- X,(W 1 7 
P1(x) B12(x) e x dx 

- )\2P) 5 d 7 
+ P,(x) p,(x) e x dx . 

Clearly, Al2 = 2x ,A, = A, and 

012 (t) = 
2x [P(state Al at time t)+P(state AEl at time t) ] 

P1 (t) I 

which is again easily computed as in Example 11, using the 
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single-fault model in isolation. Finally, as mentioned 

earlier, n2 has two components, one from the double-fault 

model: 

(p+p) [P( t t s a e AB)+P(state BA) 1 --m--e -.- 
p2 (t) 

and one from the second single-fault model: 

(l-q)C [P(state AE*)-kP(state BE,) ] d -- -- - 
P2 (t-1 

Note, however, that this "second single-fault model" is 

actually an integral part of the "double-fault model", and 

it is this joint coverage model which must be considered 

when calculating these last ratios in the style of Example 

11. 

If we again restrict ourselves to p = 0 and consider 
x ----> (3, Y then we obtain 

Q2tt,=@ q+2(a[+8) P(l-z)+p2(!- 3[e-Xt-2e-2ht+e-3Xt 1 . 

ccc+S+p) 
# 

4.3 Coverage Model Calculations 

In this section, we consider general methods of deriving the 

transition parameters qj(t) and eij(t). It should be noted from our 

previous examples that since we only compute Qj(t) and Pi(t), we never 

need the parameters Y ij(t) l 
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First we consider the parameter ')j(f). This parameter arises 

from those latent faults that give rise to a coverage failure in 

absence of any additional faults. It is certainly possible, in 

general, for a s‘ingle latent fault by itself to give rise to a 

coverage failure. This situation will be captured by a general single 

fault model that we will discuss. It is also possible for a 

combination of interacting (non-,independent) latent faults to give 

rise to a coverage failure. To capture such a situation, we'have to 

consider all possible system states due to such an interacting set of 

latent faults. In order to avoid such complexity, we only consider 

all pairs of interacting latent faults (in a general double-fault 

model) and assume that a third (interacting) fault will immediately 

give rise to a coverage failure. 

Unlike all the examples we have considered earlier, the two 

coverage models we consider here are semi-Markov processes. The main 

references on this topic are [23, 241. A semi-Markov process shares 

with a Markov process the property that state transitions are 

regeneration points obliterating the influence of the past. However, 

the holding time in a state is no longer assumed to be exponentially 

distributed. Thus we will model the time dependency of transition 

parameters where the (local) time is measured from the entry into the 

specific state. This is in contrast to the non-homogeneous Markov 

chain where the time-dependency of transition parameters with respect 

to global time only was allowed. 

Consider a general semi-Markov process shown in Figure 20. 

Events that cause a transition from state i to state j occur at the 
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Figure 20. - General Semi-Markov Process 

rate hij(t), independently of the events causing other transitions. 
Let 

pij(t) = hij(t) rij(t) where 

ij(r)d r 
r ij(t) = e . 

Unlike the Markov case, we prefer to label the arcs by the 
corresponding pdf's (eij (t)) rather than by transition rates. Thus in 

this notation, an arc labelled c( in a Ma r k ov chain will now be 
labelled a( edt. Let F ij(t) be the (unconditional) probability that a 

transition from state i to state j occurs in (local) time with 
duration 2 t. Then 

t 

E 
ijtt) = Pijcr) Jtil rik(7) d T 

k#j 

where r 

Let fij(t) be the.derivative of Fij(t). Note that rik(t) is the 
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conditional probability that no transition be made to state k by time 

t. The holding time distribution in state i is then given by 

Fi(t) = ~ Fij(t) . 
j 

Feller [23] shows that 

f21) pik ft) = Sik(l-Fi(t)) + L 
j 

fij(x)pjk(t-x) dx 

where 8ik is the Kronecker delta function. It should be noted that in 

the Markovian cases we used the forward Equation (1) all along. In 

the semi-Markov case the forward equation is, much harder than the 

backward equation above. 

Example 13: Consider the - single-fault model shown in Figure 21. 

Applying Equation (21) to the present problem and 

remembering that state 0 is the initial state, we get 

Pj&) = d(t) r(t) a(t) + d(x)r(x) p&t-X) dx 

p,,tt) = PAA (t-x) dx 

p,,(t)=d'(t) r(t)a(t)+p 
t-x 

d(x)r(x) e-PTpAA (t -r-x)dr dx 

=edt d(t)r(t)+p [de-CIX d(x)r(x) dx] 

=edt d(t)r(t)+p 
t-y 

[ dedx d(x)r(x)e P - (t-x-y) 
b' 

PAA(Y)dx dye 

Let +(t-y) = de *xd(x) r(x)e-P(t-x-y) dx 
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and where 

8(T)d T , 

a(t) =l- c(e-C(Tdr=c’O(t I 

r(t) = 1 - C((T)d 7 

Hence 

pAAtt) = eqt d(t) r(t) + p f'(t-Y) PA,(Y) dye 

0 A3 

_. /r 

Figure 21. - CARE III Single-Fault Model 
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Similarly, we have, 

PA+ = 'j)(t) + p +b=-y)p,,(y) dy . 

Once these probabili ies are computed, we can compute 

t - h(y)dr 
PA(t) = 

i 
xtx) e t 

pAA(t-X) dx 

P,(t) = X(x) e p,,(t-x) dx . 

Finally, the contribution to pj(t) by the single fault 

model, denoted by a'(t) is given by: 

-----.-- PIF (t) 
PA(t) + P,(t) +PAJt)+ l?D (t) + P ---.--- 

(t) 
D D % 

(t) + Pg 
E 

# 

A similar development can be given for the double fault model, 

however, we omit the details here. 

5. Convolution epproximations 

Numerous computations of convolution integrals of the form 

f(t-7) g(T) dr are required in CARE III reliability estimation. 

Since one of the functions, say g, is typically from a coverage model, 

while the other, f, is from the fault model, one can exploit the fact 

that f will vary slowly (relative to g over the interval of interest) 

to obtain an easily-computed approximation to the convolution 

integral. Specifically, f(t-7) can be replaced by the quadratic 

interpolation polynomial in T which passes through points 
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(O,f(t)) I (t/2 ,f(t/2)), and (t,f(O)). Writing this polynomial as 

a(t)+b(t) v+c(t) r2, one obtains 

f(t-r)g(r)d T g a(t) g (~1 dr+b (t) Ig(y)d T+c(t) T2g(r)dr . 

As an example, consider again the computation of 91 in Example 

11 of section 4.2 (this is a'(tl&) in CARE III notation). In the 

first formulation of the CAR!3 III model we see 
t 

PF(t--T)rW XPW 7 
a'(tll) = 1 - r(t) 

where p'F'(t--T) = (1-q)C (p,(t--T) + pBE(t-r) ) r r(r) = e -AT, and 

X(T) = h. In the later formulation we see 

a'(t(L> = 
h,(t) 
l-r(t) 

where hF(t) is defined as a,(t) m:(t) + bF(t) mtF (t) + cF(t)mg(t) l 

But of course 

pgF(t-T) r(v) h(r) d T 

G pvF(~) r(t-7) X(t--7) d 7, so 

r(t-r) h(t--T) is the fault model function f, ptF is the coverage model 

function g, and 
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Finally, the careful reader has perhaps noticed a difference 

in denominator between the expressions for a,(tll) above and those 

given in Example 11 of section 4. This difference is introduced to 
* 

compensate for the -->p p1 1. substitution: again, if we write 

r) = a, = N/D, then 

p1 9 = Pl(2 e -At N / 2ecXt D) = pl(2esXtN / Pl) = 2emXt N . 

* 

If we plan to substitute p1 for P1 in Pl(N / D), then an exact 

compensation occurs if we also substitute Pt / 2emXt for D; but 

PT / 2emXt = l-eWXt = l-r(t), as above. 

6.0 Concluding Remarks 

CARE III is an advanced reliability prediction tool developed 

by Raytheon under the sponsorship of NASA Langley Research Center. 

Because of sophisticated mathematics employed by CARE III, it was 

deemed desirable to provide an independent view and a tutorial of 

various important concepts employed. As of this writing, details of 

CARE III are evolving, and therefore, no attempt has been made. to 

track its developments in complete detail. Most of the concepts 

outlined here remain valid in spite of the later changes to CARE III. 

Major notions used in CARE III are that of behavioral 

decomposition followed by aggregation in an attempt to deal with 

reliability models with a large number of states. A comprehensive set 

of models of the fault-handling processes in a typical fault-tolerant 

system have been used. These models are semi-Markov in nature, thus 

removing the usual restrictions of exponential holding times within 

the coverage model. The aggregate model is a non-homogeneous Markov 
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chain, thus allowing the times to failure to possess Weibull-like 

distributions. Because of the departures from traditional models, the 

solution method employed is that of Kolmogorov integral equations, 

which are evaluated .numerically. 

There are several sources of errors in the CARE III model. 

First, the decomposition/aggregation process involves the error in 

estimating the transition parameters such as 8 j-l I j(t) on the basis of 

the analysis of a single module rather than the entire system. 

Second, the substitution of P;(t) in place of Pj(t) in solving for 

'j (t) introduces errors. Similarly, the Sj states are treated as 

terminal states in the actual CARE III model (refer to Examples 2 and 

3) which introduces errors. It is recommended that a theoretical 

analysis of these errors be carried out and bounds on these errors be 

obtained. Experimental analysis of these errors is also desirable. 

Yet another source of errors is numerical in nature. The 

numerical integration carried out to obtain ej tt) involves 

discretization and round-off errors. The convolution integration in 

solving for coverage models contains truncation errors. These errors 

also need to be analyzed. 
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